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1. INTRODUCTION

By functional differential equation with causal operators we understand
an equation of the form

d
dt

(Vx)(t)=(Wx)(t), t # [0, T], (1)

in which V and W are acting on a function space E([0, T], Rn), which is
chosen among the spaces of continuous or measurable functions.

An initial condition of the form

x(0)=x0 # Rn (2)

is usually associated to (1), but other types of auxiliary conditions can be
imposed.

In a recent paper [5], we have considered the case when the operator V
is acting on the space L�([0, T], Rn), and is given by

(Vx)(t)=x(t)+ g(x(t&h)), h>0. (3)

More precisely, it has been shown in [5] that the Eq. (1) with V given by
(3), has a local solution (for which x(t)+ g(x(t&h)) is an absolutely con-
tinuous function), satisfying an initial functional condition of the form

x(s) # L�([&h, 0], Rn), s # [&h, 0], (4)

provided g: Rn � Rn is a homeomorphism of Rn, while

W : L�([0, T], Rn) � L�([0, T], Rn)

is a continuous operator taking bounded sets into bounded sets.
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In this paper we will prove that a similar result to the one mentioned
above can be obtained in case of variable delays. The operator V in (1) will
be now of the form

(Vx)(t)=x(t)+ g(x(:(t))), t # [0, T], (5)

where :(t) is a scalar (real-valued) function satisfying 0�:(t)�t for
t # [0, T], with :(0)=0.

Unlike the case when V is given by (3), the method of integration by
steps cannot be used in case (5).

2. STATEMENT OF LOCAL EXISTENCE RESULT.

We shall discuss the existence problem for Eq. (1), with V given by the
formula (5). The following assumptions will be made on the data.

(A1) g : C([0, T], Rn) � C([0, T], Rn) is a contraction operator on
this space:

| g(x)& g( y)|C�*|x& y|C , (6)

with * # (0, 1), and any x, y # C.

(A2) W : C([0, T], Rn) � C([0, T], Rn) is a continuous causal
operator, taking bounded sets of C into bounded sets.

Theorem 1. Let us consider the neutral functional differential equation
(1), with V given by the formula (5), under initial condition (2). Assume (A1)
and (A2) are satisfied, while : is a continuous real valued function such that
:(0)=0 and 0�:(t)�t, t # [0, T].

Then, there exists a solution x=x(t) of the problem (1), (2), defined on
an interval [0, $]/[0, T] such that x(t)+ g(x(:(t))) is continuously dif-
ferentiable.

The proof will be conducted in the next section. We want now to point
out the fact that, without loss of generality, we can assume g(x0)=%=the
null element of C. Indeed, if this condition is not satisfied by g(x), x # C,
then we can substitute to g(x) the function g� (x)= g(x)& g(x0). Because
g(x) appears in (1) under the differentiation sign, it is obvious that equa-
tion (1) is the same. Moreover, if g satisfies condition (6), so does g� .

Therefore, we can discuss the existence problem under the extra condi-
tion g(x0)=%, which does not represent a restriction.
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In order to prove Theorem 1, it is useful to transform the Eq. (1), with
initial condition (2), into a single functional equation. One obtains by
integrating both sides from 0 to t>0,

x(t)+ g(x(:(t)))=x0+|
t

0
(Wx)(s) ds, (7)

for as long as x(t) is defined (t>0). The two conditions :(0)=0 and
g(x0)=% lead exactly to the Eq. (7). Of course, one can differentiate both
sides of (7) with respect to t on any interval [0, t0] on which we know
there exists a continuous solution to (7). It is obvious that (7) implies (2),
letting t=0.

Consequently, we will have to prove the existence of a continuous solu-
tion to the Eq. (7), defined on some interval [0, $], $>0.

3. PROOF OF THEOREM 1

Let us denote

(Ux)(t)=x0+|
t

0
(Wx)(s) ds, t # [0, T], (8)

which makes sense for any x # C([0, T], Rn). Then, we can rewrite the
Eq. (7) in the equivalent form

(Vx)(t)=(Ux)(t). (9)

If we succeed to show that V has an inverse on C([0, T], Rn), continuous
and causal, then equation (9) becomes

x(t)=V&1((Ux)(t)), (10)

which represents the usual form (in view of applying Schauder fixed-point
theorem) for equations with causal operators (see [3]).

Therefore, the first step in the proof of Theorem 1 is to show that the
operator V defined by (5) is onto C, while its inverse V&1 does exist, is
continuous and causal on C. In other words, the map

x(t) � (Vx)(t) (11)

is a homeomorphism of the space C. This will be possible, relatively easy,
if we take into account a result due to T. A. Burton [2].

Based on our assumptions (A1) and (A2), with :=:(t) as described
above, it is obvious that the map (11) is continuous. We have to show that
it is onto C([0, T], Rn), and it is one to one. To this purpose, let us deal
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with the functional equation (this time the term ``functional'' is understood
in the traditional sense, as it appears, for instance, in the book [1] by
J. Aczel)

x(t)+ g(x(:(t)))= f (t), (12)

in the space C([0, T], Rn), i.e., (Vx)(t)= f (t). The Eq. (12) can be also
written as

x(t)=&g(x(:(t)))+ f (t)=(Tx)(t). (13)

Since g is by assumption (A1) a contraction on C([0, T], Rn), from (13) we
see that the map T is also a contraction. Hence, Eq. (13) has a unique solu-
tion x(t) # C([0, T], Rn), for each f (t) # C([0, T], Rn). This says that V
maps C onto C, and for each f (t) # C([0, T], Rn), there is only one solu-
tion x(t) of (13). In other words, the map (11) has an inverse V&1 on C.
The Burton's result now applies and we conclude that V&1 is continuous.
Hence, the map (13) defines a homeomorphism of the space C([0, T], Rn).

Returning to the Eq. (10), we notice that the product V&1U is a con-
tinuous causal operator on C. It is actually a compact operator because U
is compact on C. This can be easily seen if we rely on (A2). If B/C is a
bounded set, then WB/C is also bounded. Therefore, there is M>0, such
that y # WB implies

| y(t)& y(s)|�M|t&s|,

which means the equicontinuity of the functions belonging to WB. Ascoli�
Arzela� criterion of compactness applies, telling us that U : C � C is com-
pact. The product V&1U, of a continuous operator and a compact one, is
obviously compact (takes bounded sets into relatively compact sets).

We also point out the fact that the operator V &1U has the fixed initial
value property. For t=0, (Ux)(0)=x0 for each x # C, which means that
V&1(x0) is the fixed initial value for V&1U.

All conditions required by Theorem 3.4.1 in [3] are satisfied by the
operator V&1U, which implies the existence of a solution to Eq. (10), on
some interval [0, $]/[0, T]. But (10) is equivalent to (9), which in turn
is equivalent to (1), (2).

This ends the proof of Theorem 1.

Remark 1. In [2], T. A. Burton shows that the homeomorphism is
valid even in case the contraction map is replaced by a weak type of map,
called ``large contraction''.

Remark 2. We have chosen the space C([0, T], Rn) as underlying
space in solving Eq. (1), under initial condition (2). The result in [3] we
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have applied above (Theorem 3.4.1) covers not only the space C, but also
the spaces L p, 1�p<�. One could adapt the above result to the situation
when the underlying space is an L p-space. Then, the equation (1) will be
satisfied only almost everywhere on [0, $], with x(t)+ g(x(:(t)) an
absolutely continuous function.

We leave the reader the task to formulate and prove results similar to
Theorem 1, in case of L p-spaces. We notice the fact that the property of
fixed initial value is not required (does not necessarily make sense).

Some results regarding L p-spaces are contained in the paper [8] by the
author and M. Mahdavi, where V=I+C, with C a compact operator. The
continuous case is dealt with in [7].

4. A RESULT OF UNIQUENESS

Under the assumptions of Theorem 1, the uniqueness of the solution
may not be true. A very simple example can be constructed as follows:
Choose g(x)=%, and (Wx)(t)= f (t, x(t)), with f continuous and such that
x* (t)= f (t, x(t)) is deprived of uniqueness.

Therefore, extra assumptions must be made on (1), in order to obtain
uniqueness of the solution for the problem (1), (2). The nature of the
problem suggests that a Lipschitz type condition on W may be sufficient to
assure uniqueness.

(A3) W : C([0, T], Rn) � C([0, T], Rn) satisfies the generalized
Lipschitz condition

|(Wx)(t)&(Wy)(t)|�+(t) sup
0�s�t

|x(s)& y(s)|, (14)

for t # [0, T], and all x, y # C, with +(t) nonnegative on [0, T].
One can read from (14) that W is causal, continuous, and takes bounded

sets of C into bounded sets. Hence, (A3) implies (A2).
It is also easy to see that +(t) must be a nondecreasing function:

+(t1)�+(t2) for t1 , t2 # [0, T], t1�t2 .

Theorem 2. Under assumptions (A1) and (A3), the solution of the initial
value problem (1), (2), with V given by (5) is unique.

Proof. Let x(t) and y(t) be two solutions of (1), (2), defined on some
interval [0, $]. Then

x(t)& y(t)+ g(x(:(t)))& g( y(:(t)))=|
t

0
[(Wx)(s)&(Wy)(s)] ds,
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on the interval [0, $]. The above equality implies

|x(t)& y(t)|&| g(x(:(t)))& g( y(:(t)))|�|
t

0
|(Wx)(s)&(Wy)(s)|ds,

and on behalf of our assumptions we derive

|x(t)& y(t)|&*|x(:(t))& y(:(t))|�|
t

0
+(s) sup

0�u�s
|x(u)& y(u)| ds.

This inequality can be strengthened, to obtain

|x(t)& y(t)|�* sup
0�s�t

|x(s)& y(s)|+|
t

0
+(s) sup

0�u�s
|x(u)& y(u)| ds.

Since the right hand side of the inequality is nondecreasing in t, we can
write

sup
0�s�t

|x(s)& y(s)|�* sup
0�s�t

|x(s)& y(s)|+|
t

0
+(s) sup

0�u�s
|x(u)& y(u)| ds

or, denoting z(t)=sup|x(s)& y(s)|, 0�s�t,

(1&*) z(t)�|
t

0
+(s) z(s) ds, t # [0, $],

which implies for each =>0

z(t)<=+(1&*)&1 +($) |
t

0
z(s) ds, t # [0, $]. (15)

The inequality (15) is of Gronwall type, which means

z(t)�= exp [(1&*)&1 +($) t], t # [0, $]. (16)

The arbitrariness of =>0 implies z(t)=0 on [0, $], which is equivalent to
x(t)= y(t) on the same interval.

This ends the proof of Theorem 2.

Remark 1. The result in Theorem 2 could be improved somewhat, sub-
stituting to (14) the condition

|(Wx)(t)&(Wy)(t)|�+(t) h( sup
0�s�t

|x(s)& y(s)| ),
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where h( } ) is a function of Osgood type:

|
0+

ds
h(s)

=+�.

Then, instead of Gronwall's inequality, one has to use Bihari's integral
inequality. Or, using the same argument as in the proof of Osgood's
uniqueness theorem for ordinary differential equations.

Remark 2. Under hypotheses (A1) and (A3), the following scheme of
successive approximations (rather theoretical than practical) is convergent.

One constructs the sequence [x(m)(t); m�1] by the iteration procedure

x(m+1)(t)+ g(x(m+1)(:(t)))=x0+|
t

0
(Wx(m))(s) ds, m�1,

starting with an arbitrary x(1)(t). Because g is a contraction map on
C([0, T], Rn), the above equation uniquely defines x(m+1)(t), as soon as
x(m)(t) is known.

Using the same procedure as in the proof of Theorem 2, one finds the
following recurrence inequality:

|x(m+1)(t)&x(m)(t)|�(1&*)&1 |
t

0
+(s) sup

0�u�s
|x(m)(u)&x (m&1)(u)| ds,

which can be handled in the usual way to prove the convergence of the
sequence [x(m)(t); m�1]. The convergence is uniform on the whole inter-
val [0, T], a feature that leads to the global existence of the solution for
(1), (2).

5. AN ALTERNATE APPROACH

Our discussion of Eq. (1) was related only to the case when V is given
by (5). If we notice that (1) is equivalent to the equation

(Vx)(t)=c+|
t

0
(Wx)(s) ds, t # [0, T], (17)

with c # Rn an arbitrary vector, then in case V has an inverse V&1, we can
rewrite (17) in the form

x(t)=V&1 \c+|
t

0
(Wx)(s) ds+ . (18)
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We notice the fact that V does not have to be necessarily causal. What is
really important now is to have a causal inverse for V, so that (18) is an
equation with causal operator, of the type investigated in [3], [11].

In case V was defined by (5), or by (3) in the paper [5], we have been
able to ``construct'' the inverse of V. In general, the existence of V&1, as
well as its causality or continuity could be taken as a hypothesis.

If we assume that W satisfies condition (A2), while V is such that it
admits an inverse V&1 on C([0, T], Rn), causal and continuous, then Eq.
(18) is locally solvable (i.e., it has a solution in some space C([0, $], Rn))
for every c # Rn. This is again a consequence of Theorem 3.4.1 in [3].

In order to obtain a result of global existence for (18), it appears
reasonable to assume a certain growth condition on V&1. Such a very spe-
cial condition could be, for instance, the boundedness of V&1 on the whole
space C, which makes sense only in case V is a homeomorphism between
a bounded subset of C and C. Such an example, in case of the space
C([0, T], R) is given by (Vx)(t)=tan x(t), where x(t) is an arbitrary
element of C([0, T], R), satisfying |x(t)|< ?

2 . The inverse operator is, in
this case, (V&1y)(t)=tan&1y(t), taking for the function tan&1 the value
between &?

2 and ?
2 .

If we admit the boundedness of V&1 on the whole C, then, with W
satisfying (A2), the Eq. (18) has a global solution (i.e., defined on [0, T]).

Indeed, under condition (A2), the operator

x(t) � c+|
t

0
(Wx)(s) ds

is continuous and compact. Since V&1 is assumed continuous on C, the
operator in the right hand side of (18) is continuous and compact on
C([0, T], Rn), and all that remains to be shown is V &1 takes a bounded,
closed and convex set of C into itself.

Let B=V&1C, which is by hypothesis a bounded set in C. Denote by
B� a ball of sufficiently large radius, such that B/B� . Then V&1B� /V &1C=
B/B� . Hence, Schauder fixed point applies and we obtain the existence of
a solution to (18), in the space C([0, T], Rn).

Summarizing the above discussion, we can state the following result:

Theorem 3. Consider the Eq. (1), with V such that it is a homeo-
morphism between a bounded subset of C([0, T], Rn) and C([0, T], Rn).
Assume further that V&1 is a causal operator on C([0, T], Rn). The operator
W is supposed to satisfy the condition A2 above.

Then, there exists a solution of (1) in C([0, T], Rn). More precisely,
both Eqs. (17) and (18), which are equivalent to (1), have a solution in
C([0, T], Rn) for every c # Rn.
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In concluding this paper, let us mention that a comprehensive account
on neutral functional differential equations, in an early stage and somewhat
different definition, is given in J. K. Hale's book [9]. See also J. K. Hale
and K. R. Meyer [10], with particular regard to the linear case. A more
recent contribution is due to S. M. Verduyn Lunel and D. V. Yakubovich
[12], also dealing with the linear case.
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