Contents

Symposium Participants v
Foreword xix

Chromatin Modifications and Gene Expression

Drosophila Heat Shock System as a General Model to Investigate Transcriptional Regulation
M.J. Guertin, S.J. Petesch, K.L. Zobek, I.M. Min, and J.T. Lis 1

Chromatin in the Nuclear Landscape

Cell Signaling and Transcriptional Regulation via Histone Phosphorylation
S.L. Berger 23

HIRA and Daxx Constitute Two Independent Histone H3.3-Containing Predeposition Complexes
S.J. Elsaesser and C.D. Allis 27

The INO80 Family of Chromatin-Remodeling Enzymes: Regulators of Histone Variant Dynamics
S. Watanabe and C.L. Peterson 35

Role of K3K27 Demethylases Jmjd3 and UTX in Transcriptional Regulation
M.R. Hübner and D.L. Spector 43

Epigenetic Inheritance of Centromeres
S. Henikoff and T. Furuyama 51

Functional Dissection of Polycomb Repressive Complex 1 Reveals the Importance of a Charged Domain
D.J. Grau, J.M. Antao, and R.E. Kingston 61

Histone Acetylation and the Maintenance of Chromatin Compaction by Polycomb Repressive Complexes
R. Eskeland, E. Freyer, M. Leeb, A. Wutz, and W.A. Bickmore 71

Chromatin Boundaries, Insulators, and Long-Range Interactions in the Nucleus
K.E. Giles, H. Gowher, R. Ghirlando, C. Jin, and G. Felsenfeld 79

Transcription and Beyond

Nuclear Origins of Cell-to-Cell Variability
Z. Waks and P.A. Silver 87

The Role of Cotranscriptional Histone Methylations
S. Buratowski and T. Kim 95

Chromatin and Alternative Splicing
M. Alló, I.E. Schor, M.J. Muñoz, M. de la Mata, E. Agirre, J. Valcárcel, E. Eyras, and A.R. Kornblüth 103

Nuclear Physics: Quantitative Single-Cell Approaches to Nuclear Organization and Gene Expression
T. Lionnet, B. Wu, D. Grünwald, R.H. Singer, and D.R. Larson 113

CBP80-Promoted mRNP Rearrangements during the Pioneer Round of Translation, Nonsense-Mediated mRNA Decay, and Thereafter
L.E. Maquat, J. Hwang, J. Hwang, H. Sat0, and Y. Tang 127

DNA Replication and Genome Integrity

The Many Faces of Redundancy in DNA Replication Control
J.F.X. Diffley 135

Space and Time in the Nucleus: Developmental Control of Replication Timing and Chromosome Architecture
D.M. Gilbert, S.-I. Takebayashi, T. Ryba, J. Lu, B.D. Pope, K.A. Wilson, and I. Hiratani 143

Heterochromatin at Mouse Pericentromeres: A Model for De Novo Heterochromatin Formation and Duplication during Replication
C. Maison, J.-P. Quivy, A.V. Probst, and G. Almouzni 155

How Shelterin Solves the Telomere End-Protection Problem
T. de Lange 167

The Smc5/6 Complex: More than Repair?
A. Kegel and C. Sjögren 179

Reprogramming and Differentiation

Efficiencies and Mechanisms of Nuclear Reprogramming
V. Pasque, K. Miyamoto, and J.B. Gurdon 189

Gene Targeting in Human Pluripotent Cells
D. Hockemeyer and R. Jaenisch 201

© 2011 by Cold Spring Harbor Laboratory Press
CONTENTS

Epigenetic Reprogramming of Mouse Germ Cells toward Totipotency M.A. Surani and P. Hajkova 211
Nuclear Mobility and Mitotic Chromosome Binding: Similarities between Pioneer Transcription Factor FoxA and Linker Histone H1 K.S. Zaret, J.M. Caravaca, A. Tulin, and T. Sekiya 219
Connecting Transcriptional Control to Chromosome Structure and Human Disease J.J. Newman and R.A. Young 227
Transcription Factors for the Modulation of Pluripotency and Reprogramming J.-C.D. Heng, Y.L. Orlov, and H.-H. Ng 237
Cancer Epigenetics: From Disruption of Differentiation Programs to the Emergence of Cancer Stem Cells P. Scaffidi and T. Misteli 251

Heterochromatin Formation and Gene Silencing

Assembly and Functions of Heterochromatin in the Fission Yeast Genome O. Aygün and S.I.S. Grewal 259
Germline Reprogramming of Heterochromatin in Plants K.M. Creasey and R.A. Martienssen 269
On the Connection between RNAi and Heterochromatin at Centromeres E. Lejeune, E.H. Bayne, and R.C. Allshire 275
Transcriptional Interference and Gene Orientation in Yeast: Noncoding RNA Connections M. Gullerova and N.J. Proudfoot 299

Nuclear Bodies and RNA Biology

Cajal Bodies and Histone Locus Bodies in Drosophila and Xenopus Z.F. Nizami, S. Deryusheva, and J.G. Gall 313
Down-Regulation of a Host microRNA by a Viral Noncoding RNA D. Cazalla and J.A. Steitz 321
Long Noncoding RNAs as Enhancers of Gene Expression U.A. Ørom, T. Derrien, R. Guigo, and R. Shiekhattar 325
Chromatin Structure and Nuclear Organization Dynamics during X-Chromosome Inactivation E.P. Nora and E. Heard 333
XIST RNA and Architecture of the Inactive X Chromosome: Implications for the Repeat Genome L.K. Hall and J.B. Lawrence 345
Genetic Analysis of Nuclear Bodies: From Nondeterministic Chaos to Deterministic Order T.K. Rajendra, K. Praveen, and A.G. Matera 365

Chromosome Structure and Mitosis

Splitting the Nucleus: What's Wrong with the Tripartite Ring Model? K. Nasmyth and R.A. Oliveira 375
Physical Linkages between Sister Chromatids and Their Removal during Yeast Chromosome Segregation J. Baxter and L. Aragón 389
Temporal and Spatial Regulation of Targeting Aurora B to the Inner Centromere Y. Watanabe 419
The Life Cycle of Centrioles E. Hatch and T. Stearns 425
Thoughts on Aneuploidy E.M. Torres, B.R. Williams, Y.-C. Tang, and A. Amon 445

© 2011 by Cold Spring Harbor Laboratory Press
CONTENTS

Chromatin Structure and Organization

Insights into Interphase Large-Scale Chromatin Structure from Analysis of Engineered Chromosome Regions A.S. Belmont, Y. Hu, P.B. Sinclair, W. Wu, Q. Bian, and I. Kireev 453

Chromatin Folding: From Linear Chromosomes to the 4D Nucleus T. Cheutin, F. Bantignies, B. Leblanc, and G. Cavalli 461

Window into the Complexities of Chromosome Interactomes A. Göndör, A. Fernandez Woodbridge, C. Shi, E. Aurell, M. Imreh, and R. Ohlsson 493

Transcription Factories and Nuclear Organization of the Genome C.H. Eskiew, N.F. Cope, I. Clay, S. Schoenfelder, T. Nagano, and P. Fraser 501

Role of Nuclear Architecture in Epigenetic Alterations in Cancer H.P. Easwaran and S.B. Baylin 507

Nuclear Periphery

Role of the Nuclear Lamina in Genome Organization and Gene Expression D. Peric-Hupkes and B. van Steensel 517

Nuclear Lamins in Cell Regulation and Disease T. Shimi, V. Butin-Israeli, S.A. Adam, and R.D. Goldman 525

Lamina-Independent Lamins in the Nuclear Interior Serve Important Functions T. Dechat, K. Gesson, and R. Foisner 533

Three-Dimensional Organization of Chromatids by Nuclear Envelope–Associated Structures G. Blobel 545

Repetitive Transgenes in C. elegans Accumulate Heterochromatic Marks and Are Sequestered at the Nuclear Envelope in a Copy Number- and Lamin-Dependent Manner B.D. Towbin, P. Meister, B.L. Pike, and S.M. Gasser 555

The Mechanism of Nucleocytoplasmic Transport through the Nuclear Pore Complex J. Tetenbaum-Novatt and M.P. Rout 567

Nuclear Pore Complexes: Guardians of the Nuclear Genome M. Capelson, C. Doucet, and M.W. Hetzer 585

Summary: The Nucleus—A Close-Knit Community of Dynamic Structures S. Henikoff 607

Author Index 617

Subject Index 619
Chromatin plays a critical role in the regulation of gene expression. Interactions among chromatin regulators, sequence-specific transcription factors, and cis-regulatory sequence elements are the main driving forces shaping context-specific chromatin structure and gene expression. However, because of the large number of such interactions, direct data on them are often missing in most cellular contexts. The purpose of the present work is to show that, by modeling matched expression and accessibility data across diverse cellular contexts, it is possible to recover a significant portion of the information. These well sequenced centromeres provide us a platform to profile chromatin modifications and RNA expression patterns associated with maize centromeres. We developed a high resolution genome-wide map of maize CENH3 nucleosomes based on Illumina sequencing of DNA samples prepared from chromatin immunoprecipitation (ChIP) using a maize anti-CENH3 antibody. These active genes were associated with euchromatic histone modification marks. In addition, maize centromeres lacked both euchromatic histone modifications (except for the regions associated with active genes) and H3K27me2, a mark of heterochromatin in maize. Nature of chromatin modifications with respect to gene expression, it is clear that metazoan transcription factors do not survey the entire genome landscape (Kolomeisky, 2011) and that evidence suggests that changes in metabolite availability do influence chromatin modifications and ultimately gene expression. In mammalian cells, in cultured cells, nucleocytoplasmic pools of. It has been demonstrated during the past decade that the posttranslational modifications of histone proteins within the chromosome impact chromatin structure, gene transcription, and epigenetic information. Multiple modifications decorate each histone tail within the nucleosome, including some amino acids that can be modified in several different ways. Covalent modifications of histone tails known thus far include acetylation, phosphorylation, sumoylation, ubiquitination, and methylation. Highlighted in this review are the recent biochemical, molecular, cellular, and physiological functions of histone methylation and ubiquitination involved in the regulation of gene expression as determined by a combination of enzymological, structural, and genetic methodologies. Histone Modification and Gene Expression. Gene expression is governed by complex mechanisms including transcription factor binding to DNA and coordinated changes in chromatin structure. The primary protein components of chromatin are the histones, which are assembled along with DNA into larger complexes known as nucleosomes. Each nucleosome contains two copies of the core histones, H2A, H2B, H3, and H4, each of which has an accessible amino terminal tail with a high proportion of lysines and arginines. Modifications of histone proteins constitute an important mechanism of gene regulation. Hist