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Mathematics, rightly viewed, possesses not only truth,
but supreme beauty—a beauty cold and austere, like that
of sculpture, without appeal to any part of our weaker na-
ture, without the gorgeous trappings of painting or music,
yet sublimely pure, and capable of a stern perfection such
as only the greatest art can show. The true spirit of delight,
the exaltation, the sense of being more than Man, which is
the touchstone of the highest excellence, is to be found in
mathematics as surely as poetry.

— Bertrand Russell, A History of Western Philosophy

In February 2016, there was an announcement by

NSF, Caltech and MIT that they have found gravita-

tional wave as predicted by Einstein 100 years ago.

This is a triumph of the theory of Einstein who

proposed that gravity should be looked at as effects

of curvature of space-time. My title of Geometry and

Physics is very much related to this proposal of Ein-

stein.

Before this theory of Einstein, scientists followed

the viewpoint of Newton that the space is static and

gravity allows action at a distance simultaneously.

When special relativity was discovered at 1905 by

Einstein, with the helps by several people including

Lorentz and Poincaré, it was found that physical in-

formation should not travel faster than light, and the

principle of action at a distance that was used by New-

tonian gravity is not compatible to the newly found

special relativity.

In a vague sense, Einstein and other physicists

knew that space and time cannot be distinguished un-

der the rules of relativity.

It was not until 1908 that Minkowski, teacher of

Einstein, proposed the concept of Minkowski four

dimensional space-time where a metric of Riemann

type is used to describe all phenomena that appear in

special relativity. The group of motion of this space-

time is given by the Lorentzian group.

* Based on a talk given at Tsinghua University in 2016.
† Harvard University

After this important discovery of Minkowski, Ein-

stein realized that the description of gravity should

be given by a four dimensional object. By thought ex-

periments, he realized that the quantity to describe

gravity has to depend on directions at each point.

When an observer is moving in some direction, the

distance he or she measures will change depending

on the direction he is measuring. (When it is mea-

sured in the direction perpendicular to his move-

ment, nothing changes but is different when it is par-

allel to his movement.)

After he consulted his college friend Grossmann,

Einstein understood that gravity should be measured

by a tensor: a quantity that was invented by geome-

ters (Christoffel, inspired by Riemann’s works) in late

nineteenth century. In fact, the tensor he needed was

first invented by Riemann in 1854, with different sig-

nature. This was a great breakthrough as Newtonian

gravity was measured by a scalar function, not by a

tensor.

When Einstein wanted to generalize the equation

of Newton on gravity, he needed some quantity that

was obtained by differentiating the above metric ten-

sor two times. (In Newtonian gravity, it was deter-

mined by the Laplacian of the scalar gravitational po-

tential.) But he wanted to make sure everything obeys

the equivalence principle: every law of physics is the

same independent of frame of observer. Hence the

result of this second derivative of the metric tensor

must be a tensor again.

Well, it is known that all tensors that are obtained

by differentiating the metric tensor twice must be a

combination of the curvature tensor of the metric

and the curvature tensor is the only tensor that de-

pends linearly on the second derivatives of the met-

ric. If there are other physical fields coming from dif-

ferent matter (other than gravity) there is a matter
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stress tensor. Then a simple generalization of New-

ton’s equation is try to equate the above curvature

tensor with this matter tensor.

There is only a couple of curvature tensors that

can do the job. One is called the Ricci tensor which

was found in the library by Grossmann for Einstein.

It was invented by Ricci in the end of nineteenth cen-

tury.

Einstein and Grossmann wrote two papers in

1912 and 1913, where they wrote down the equa-

tion for gravity in tensorial form. But Einstein was

not able to use the equations to explain perihelion of

Mercury. He was tempted to give up the equivalence

principle by choosing a suitable coordinate system.

The Einstein-Grossmann equation did not satisfy con-

servation law and has to be modified!

Einstein struggled on this question until he met

Hilbert in 1915. By November, Hilbert and Einstein

arrived at the derivation of the Einstein equation

around the same time. Hilbert also found the Hilbert

action whose variation will give the Einstein equation.

It should be noted that Hilbert gave a lot of credit to

Emmy Noether on helping him to achieve the works.

The great accomplishment of Einstein also relied on

his understanding of the physical meaning and the

application of the equation to explain astronomical

events.

The geometers Euler, Gauss, Riemann, Ricci,

Christoffel, Bianchi, Minkowski, Hilbert, Levi-Civita

and others had great impact on the creation of the

subject of general relativity. But the creation of gen-

eral relativity has tremendous input on the develop-

ment of Riemannian geometry in the twentieth cen-

tury up to present days.

We shall discuss about such development now.

The Idea of Using Symmetry to Dictate Geometry

and Physical Phenomena

Some physicists claimed that Einstein was the

first one to use symmetry to derive an equation of in-

terest. Actually his work was inspired by his teacher

Minkowski who used Lorentzian group as the group

of symmetry to derive the Minkowski space-time.

In fact, the idea of using symmetry to understand

geometry went back to the nineteenth century where

the works of Sophus Lie and Klein helped us to cre-

ate invariants of geometry by continuous symmetries.

Klein’s famous Erlangen Program in 1872 was to clas-

sify geometry according to their group of symmetry.

The classification of the structure of the Lie

groups is one of the most glorious chapter in math-

ematics. It starts from Sophus Lie, Killing, Klein and

continued into the twentieth century by E. Cartan, and

H. Weyl. The power of representation theory of finite

and compact groups has repeatedly appeared in ge-

ometry and physics.

Weyl was the key person to pioneer the theory for

compact Lie groups. Hermann Weyl, Eugene Wigner

and others applied such theory to quantum mechan-

ics and brought fruitful results. It has been one of the

most important method in studying particle physics,

where groups U(1), SU(2), SU(3) and SU(5) are related
to electric magnetic field, weak interaction, strong in-

teraction and grand unified fields.

The work of Emmy Noether on the action princi-

ple had direct influence on modern physics and ge-

ometry. In fact, she was in Göttingen in 1915 when

Hilbert was working on the action principle of gen-

eral relativity. Hilbert acknowledged the influence of

her ideas on his work.

The Noether theorem [20], published in 1918, that

if a system has a continuous symmetry property, then

there corresponds a quantity that is conserved in

time, inspired the modern treatment of mechanics

and modern symplectic geometry and the concept of

moment map.

Development of Gauge Theory

Immediately after the success of Einstein on gen-

eral relativity, there was great desire to unify all the

known forces by using ideas similar to general relativ-

ity. At that time, themost important field is electricity

and magnetism as is dictated by Maxwell equations.

There were two approaches: one is the gauge the-

ory of Hermann Weyl and the other one is the Kaluza-

Klein model of General relativity in five dimensions.

Both of these two developments lay the founda-

tions of modern geometry and modern physics.

In fact, in the theory of electromagnetism,

Riemann-Silberstein vector which combines electric

and magnetic fields, is also attributed to Riemann.

This is a complex vector of the form F = E + c
√
−1B

where c is the speed of light.

This vector is an origin of what physicists later

generally called “dualities” in the framework of string

theory and quantum field theory. For example, the in-

terpretation of Geometric Langlands program in the

work of Kapustin and Witten originates from a gen-

eralization of this “electro-magnetic” duality to non-

abelian contexts.

At the level of particles, this is the duality be-

tween electron and magnetic monopole, which gave

birth to the Seiberg-Witten theory in physics.

Hermann Weyl was the first one who introduced

the concept of Gauge theory. (he was the one who

coined this terminology.) While gravity can be consid-

ered as a gauge theory with gauge group given by the

group of diffeomorphisms, Weyl succeeded to show

that Maxwell equations is also a gauge theory with
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gauge group given by U(1). The development went

through a nontrivial process.

The group that Weyl proposed at the beginning

was noncompact and cannot preserve length. This

was criticized by Einstein. But after a few years, Weyl

learned from the works of London et al. in quantum

mechanics that the group should be U(1). Once the

group is chosen right, length is preserved under par-

allel transportation and Maxwell equation becomes a

gauge theory.

While Weyl accomplished the remarkable inter-

pretation of Maxwell equations in terms of gauge the-

ory around 1928, the theory of connection was devel-

oped by several geometers. In 1917, Levi-Civita stud-

ied parallel transport of vectors in Riemannian geom-

etry. In 1918, Weyl in his book [29] introduced affine

connections. Cartan in 1926 studied holonomy group

for general connections.

Levi Civita and E. Cartan were interested in an-

other approach to extend Einstein theory of general

relativity by looking into connections with nontrivial

torsion. (Einstein was using Levi-Civita connections

which has no torsion.) The connection still preserves

metric. This is in fact a form of gauge theory on the

tangent bundle. But Weyl’s point of viewwas different

and did not restrict himself to tangent bundles.

In 1944, Chern [6] studied Hermitian connections

on complex bundles and, using the curvature of the

Hermitian connections, introduced the Chern classes

of the bundles. They give rise to the de Rham classes

of the space which turns out to be integral classes.

Upon seeing the definitions, Weil interpreted

Chern’s theory in terms of invariant theory. This is

called the Chern-Weil theory. It is remarkable that

Weil said that at that time Chern classes may be used

to quantize physical theory.

The modern formulation of connections on ar-

bitrary bundles was introduced by C. Ehresmann in

1950.

Modern development of high energy physics and

theory of condensedmatter shows that the prediction

of Weil is accurate. In fact, not only Chern classes play

an important role in modern quantum field theory,

the Chern-Simons invariant, which is derived from

curvature representation of Chern classes, also play

an important role in condensed matter physics and

string theory, which in turn influence the study of

knot theory in geometry, as was shown by Witten that

it can be used to explain the Jones polynomial of the

knots.

From this point of view, an important insight was

gained to calculate the volume of a complete hyper-

bolic metric on the knot complement. This is called

volume conjecture due to Kashaev [13], H. Murakami

and J. Murakami [19].

The volume conjecture states that in a certain

limit when the number of colorings N approach in-

finity in the N-colored Jones polynomial for a knot,

the value of the colored knot Jones polynomial eval-

uated at the N-th root of unity is the exponential

of N-times the simplicial volume of the knot com-

plement divided by 2π . The knot complement can

be uniquely decomposed into hyperbolic pieces and

Seifert fibered pieces. The simplicial volume is then

the sum of the hyperbolic volumes of the hyperbolic

pieces of the decomposition.

The volume conjecture dictates the convergence

of the quantum Chern-Simons path integral with non-

compact gauge group and has nontrivial connections

with three-dimensional quantum gravity. This con-

nection was anticipated by Witten and later studied

also by Gukov and Vafa.

Yang-Mills Theory

In 1954, there were two independent develop-

ments related to gauge theory. One was the work of

Yang and Mills [36] who looked at an action on the

space of connections on higher rank bundles over a

manifold. The group of parallel transportation will

preserve a higher dimensional Lie group whose di-

mension is, in general, greater than the circle group as

was used by Weyl. This group is in general not com-

mutative. Hence this generalization of gauge theory

of Weyl is called nonabelian gauge theory. The action

that Yang and Mills used was the L2 norm of the cur-

vature of the connection.

The theory of Yang-Mills was finally quantized

by ’t Hooft [12] in early 1970s, based on preliminary

works of Faddeev-Popov [9]. This was a difficult work

as there is a problem of choice of gauge. The works

of ’t Hooft was continued by Veltman, Gross et al. It

laid the foundation for the theory of standard model

of modern particle physics.

The equation of motion defined by the Yang-

Mills action gives rise to a nice elliptic system (in

a suitable choice of gauge) which was not studied

by geometers. At late sixties and early seventies,

during the process of quantization of gauge theory,

’t Hooft and Polyakov became interested in the con-

cept of monopoles and instantons defined on four di-

mensional Euclidean space. They give important spe-

cial solutions of Yang-Mills equation, by minimizing

Yang-Mills energy in terms of topological data. Be-

cause of the last property, they played important

roles in topological quantum field theory.

There were extensive efforts by physicists and

mathematicians in the 1970s to find these instantons.

The equations of instantons were rewritten in 1977

by C.N. Yang in terms of Cauchy-Riemann equations.

In fact, what Yang did was that the instanton bundle
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should be extended to be a holomorphic bundle over

complex projective space and, after extension, the in-

stanton connection satisfies certain equation on this

holomorphic bundle which we later called Hermitian-

Yang-Mills connection.

The concept of Hermitian-Yang-Mills connection

can be generalized to higher dimensional Kähler man-

ifolds. They are “super symmetric” and played impor-

tant roles in the development of string theory and al-

gebraic geometry.

The most important work in this direction was

due to Donaldson [8] for algebraic surfaces and due

to Uhlenbeck-Yau [26] for arbitrary Kähler manifolds.

In the meanwhile, Donaldson [7] observed that

the moduli space of instantons can be used to de-

fine topological invariants for four-dimensional man-

ifolds. Hence he made the first major achievement

in the theory of topology of smooth four-manifolds.

While Donaldson invariants have been fundamental,

it is not so easy to compute. Ten years later, Seiberg

and Witten [34] found a simpler invariant for four-

manifolds which enjoy similar properties as Donald-

son invariants. Taubes [24, 25] made fundamental

contributions to the subject of symplectic geometry

by constructing pseudoholomorphic curves based on

nonvanishing of Seiberg-Witten invariants. Many ma-

jor results were solved by the work of Taubes.

Calabi-Yau Manifold and String Theory

The other important development was due to E.

Calabi. He was also interested in the Yang-Mills action

on the space of metrics. Within the space of Kähler

metrics with the same Kähler class, Calabi [3] showed

that the critical point of the Yang-Mills functional

gives rise to the Kähler-Einstein metric if the Kähler

class is proportional to the first Chern class.

The existence of such critical points was not

known at the time. It is called the Calabi conjecture

when the first Chern class is zero.

The third major development, after the great dis-

covery in 1915, was the work of Kaluza, followed by

Oscar Klein. They proposed a remarkable approach

to create the Maxwell equations from vacuum Ein-

stein equations. They considered the vacuum Einstein

equation on a four dimensional manifold product

with a circle and demanded all the fields to be invari-

ant under the rotation of the circle group.

In this way, they found a (Lorentzian) metric ten-

sor, a vector field and a scalar on the four manifold.

The vector field satisfies the Maxwell equations which

couple with the metric tensor. This is a beautiful the-

ory, except that the extra scalar field cannot be found

in nature. Nonetheless, this is a beautiful theory and

Einstein likes it.

This theory is the forerunner of the compacti-

fication theory in modern string theory. The circle

is replaced by a six dimensional manifold satisfying

certain constraints. Those constraints give rise to the

Calabi-Yau manifolds which are Kähler manifolds

with a non-vanishing holomorphic volume form.

The existence of a Kähler metric with zero Ricci

curvature was proved by me [35] in 1976. Its use in

string theory was proposed by Candelas-Horowitz-

Strominger-Witten [4] in 1984. The proposal was that,

with the right choice of such Calabi-Yau manifolds,

we can calculate the basic physical quantities in na-

ture, including number of generations of fermions,

grand unification scale and Yukawa couplings. Many

important algebraic and enumerative properties was

proved for Calabi-Yau manifolds based on intuition

coming from string theory.

A very major property that arises in physics is

duality between Calabi-Yau manifolds which gives a

very effective tool to calculate interesting geometry

objects that are of great interest to geometers. Dif-

ferent branches of mathematics were brought in to

study such dualities.

It is rather exciting to watch these branches

merge in a natural manner within string theory.

Index Formula and Hodge Theory

The basic tools to study above theories came

from some classical theory in mathematics and in

physics. Hilbert, in his systematical way to organize

the theory of integral equations, introduced the con-

cept of Hilbert space. The study of self-adjoint and

non-self-adjoint operators on Hilbert spaces play fun-

damental roles in quantum mechanics.

It was a coincidence that abstractly defined spec-

trum of an operator coincide with the spectrum

found in nature. Weyl also found the fundamental

Weyl law for the asymptotic behavior of the spectrum

of linear elliptic operators based on the question on

black body radiation, which was a question raised by

Lorentz.

Study of index of elliptic operators relating index

of the operator to the topology of the manifold has

made much contribution to modern geometry and

particle physics. This gave rise to the famous Atiyah-

Singer index formula [2].

One of many physical applications of the in-

dex formula is to the study of anomaly in quan-

tum field theory. Fujikawa among others derived the

chiral anomaly using index theorem. Álvarez-Gaumé

and Witten applied similar methods to the study

of anomaly in quantization of gravity. Green and

Schwarz used it to derive the correct grand unifica-

tion group for the heterotic string, setting off the first

string theory revolution.
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The very important tool towards such develop-

ment was pioneered by Hodge [11] in 1941. This ac-

tually went back to the works of 19th century where

periods of integral were studied extensively by Rie-

mann, Abel, Lagrange, Jacobi and others.

A significant part of the later interpretation of

Riemann’s work owes to Hermann Weyl. Weyl’s book

[28] which formulated Riemann’s results in modern

terms concerning the existence of polarized Hodge

structures.

Weyl’s book was published in 1913 as the fifth

volume in the series of Göttingen Lectures on math-

ematics, the previous four volumes were by Klein,

Minkowski, Voigt, and Poincaré.

Weyl developed the theory later called Hodge the-

ory in his book based on a motivation from fluid dy-

namics. His philosophy was influenced by the book

of F. Klein [14].

Period is the integral of a closed form over a cycle.

According to the theory of de Rham, this gives a pair-

ing between topological cycles and space of closed

formsmodulo those which are exact. Hodge proposed

forms that are closed and coclosed to be harmonic

forms. He proved that periods can be realized by har-

monic forms.

Historically, the question of period was studied

for two-dimensional surfaces at the beginning. Some

part of this theory was developed by the theory of

two dimensional fluid dynamics in nineteenth cen-

tury. Klein wrote about it in his book. In the 1913

book on Riemann surface, Weyl established the the-

ory of harmonic forms on Riemann surfaces based on

the Dirichlet principle of Riemann.

In 1930s, Hodge generalized the theory to

higher dimensional manifold based on the theory of

parametrix of Hadamard. Hodge’s work appeared in

1942.

Hodge stated that the main purpose of his book

[11] was to prove, using differential forms and the

then recent de Rham theorem, Lefschetz’s results on

the topology of algebraic varieties.

He derived several theorems of de Rham using his

main existence theorem for harmonic integrals. This

led to the Hodge decomposition theorem.

It is interesting to note that Weyl published a pa-

per [30] in which he demonstrated how to apply the

theory of projection to study Hodge theory in Rie-

mann surfaces. This method was later used exten-

sively to study Hodge theory.

Right after Hodge published his work, a gap was

found in the proof of existence of harmonic forms

with prescribed period which was fixed by Weyl and

Kodaria via different approaches.

Weyl’s proof appeared in his 1943 paper [31].

Kodaira gave another proof independent of Weyl’s

for the prescribed period problem in 1942. Kodaira

[15] later generalized it to the existence of harmonic

forms with prescribed singularities (and periods).

In early 1950s, Milgram and Rosenbloom [18] in-

troduced the heat equation method to give a proof

of the Hodge theory. The method of heat flow has

tremendous influence in later development in geom-

etry.

In the above discussion on Weyl estimate on

asymptotic behavior of eigenvalues, we should men-

tion that estimate of eigenvalues of Laplacian went

back to early works of applied mathematicians and

physicists such as Lord Kelvin, Lord Rayleigh, Rel-

lich, Hilbert in 19th century and also Pólya, Szegö,

Courant, Carleman in the early 20th century.

Some approaches are based on studying the heat

kernel and the Tauberian theorems (in the last fifty

years, wave equation method was brought in by Hör-

mander, developed by Ivrii, Victor Guillemen, Stern-

berg, Duistermaat, Boutet de Monvel, Sjöstrand, Tay-

lor, Zelditch, Melrose, Ralston and others), which was

the one used by Weyl to deduce his asymptotic es-

timates. Another approach was based on variational

principle, or min-max principle characterization of

eigenvalues.

The later method brought in close relation of

spectrum of Laplacian with geometry, especially the

isoperimetric inequality of various kind. Pólya and

Szegö gavemany important discussions on how those

quantities give rise to effective estimates of eigenval-

ues of Laplacian. The idea appeared later in the paper

of Cheeger [5] where he discussed the estimate of first

eigenvalue on a compact manifold. This is now called

Cheeger inequality and is being studied extensively in

the theory of graph.

While the idea of using wave kernel has been able

to link eigenvalues of Laplacian with the length of

closed geodesics of the manifold, the method of heat

kernel gives rise to many delicate estimates in ge-

ometry, including the local index formula of Atiyah-

Singer. This later work has played important roles in

modern quantum field theory.

Development Since 1970

Several important events occurred in the 1970s

that changed geometers’ view towards physics. Be-

sides the important discussion of instanton solutions

to Yang-Mills equations which led to the revolution of

topology of four manifolds, we have the discussion of

positive mass theorem in general relativity.

While this conjecture was settled by Schoen and

myself [21, 22] in 1978, it has far reaching conse-

quence in understanding geometry of manifolds with

positive scalar curvature. The later work of Witten

[32] in proving the positive mass conjecture using

Dirac spinors gives a different and powerful venue

to understand classical general relativity.
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In the past thirty years, both the methods of

Schoen-Yau and Witten have developed to be im-

portant powerful tools in classical general relativity

and the theory of manifolds with positive scalar

curvature.

Perhaps one should mention that the method of

harmonic spinor dated back to the important work

of Lichnerowicz [17] on his famous vanishing theo-

rem, which, coupled with Atiyah-Singer index theo-

rem, gave the first instance of topological obstruction

for metrics with positive scalar curvature.

A very major turning point for implication of

ideas on geometry was the famous paper of Witten

[33] on analytic treatment of Morse theory. This pa-

per has deep influence in later development of super-

symmetric quantum field theory and differential ge-

ometry. Immediately afterwards, Floer extended the

ideas to build the Floer theory in symplectic geom-

etry where he was able to prove the Arnold conjec-

ture in case the manifold has trivial higher homotopy

groups.

The idea of Witten was motivated by quantum

field theory and also became the foundation of later

development of topological field theory.

The idea of keeping track of the change of a

theory when some parameter is moving, is a very

important one. In the case of the heat equation proof

of the Hodge theory or the index formula, when

the temperature is very high, we see the harmonic

forms or solutions of some linear elliptic system.

But when the temperature is low, the classical effect

comes from the metric or from the coefficients of

the operators. Hence if some object (such as the

index of the elliptic operator) is invariant when the

temperature varies, we can relate it on the one hand

to quantum mechanical property and on the other

hand to classical properties.

In Witten’s interpretation of the Morse theory, the

space of harmonic forms is related to critical point of

a function defined on the manifold. In 1994, Seiberg

and Witten, based on similar philosophy, also con-

nected the Donaldson invariants on four manifolds

to some topological invariant which are easier to com-

pute.

A very important contribution of the Seiberg-

Witten type invariants is the fundamental result

of Taubes who was able to make use of the non-

vanishingness of the (topological) Seiberg-Witten in-

variant to construct pseudo-holomorphic curves for

four-dimensional symplectic manifold with an almost

complex structure.

Many important open problems in four-dimen-

sional symplectic geometry were solved by this the-

orem of Taubes. In particular, Taubes [23] solved an

old problem that the symplectic structure on the com-

plex projective plane is unique.

The subject of symplectic geometry probably al-

ready started after Newtonian mechanics was in-

vented. But the modern development mainly started

from the work of Emmy Noether where she published

the important foundational work in 1918. Many mod-

ern ideas such as moment map can be traced to her

works.

The theory of geometric quantization and mo-

ment map played an important role in geometry and

physics, influencing the theory of representation and

differential geometry.

Atiyah and Bott [1] initiated the idea of inter-

preting Yang-Mills action of bundles over Riemann

surfaces. This point of view has deep influence on

Donaldson and other mathematicians in Oxford, who

started to look at similar situations on complex alge-

braic surfaces.

However, the theory becomes much more compli-

cated as theory of nonlinear elliptic equation associ-

ated to the subject in this number of dimensions is

not solid enough. In most cases, it was used as a mo-

tivation rather than a proof.

On the other hand, symplectic geometry has be-

come much more developed in the last thirty years

after it was realized that the theory of mirror sym-

metry, motivated by physical consideration, called for

a symmetric treatment of symplectic geometry with

complex geometry. Roughly speaking, the symplec-

tic geometry of one Calabi-Yau manifold is supposed

to be isomorphic to the complex geometry of the

mirror Calabi-Yau manifold. The actual situation is

much more complicated as we need to find the so

called quantum corrections to the symplectic theory.

But the quantum corrections contain many interest-

ing geometric objects that we like to learn, for exam-

ple pseudo-holomorphic curves.

Pseudo-holomorphic curves are also called world-

sheet instantons by physicists. In fact, when Candelas

et al. [4] computed the instanton correction for an

important Calabi-Yau manifold, they found a closed

formula for the counting of rational curves within the

manifold, revealing its deep geometric properties.

It solved a long standing question in enumerative

geometry. Nobody in algebraic geometry expected

that it can be done in such an elegant way. Up to now,

there is no other way to find the formula of Candelas

et al. based on algebraic geometry alone although the

formula was proved rigorously to be true by Givental

[10] and Lian-Liu-Yau [16] independently, a few years

after Candelas and collaborators announced their

result.

This new chapter of enumerative geometry is

called the theory of Gromov-Witten invariants. Major

contributions on the subject can be viewed as joint

efforts of mathematicians and physicists.
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In the past ten years, we have witnessed that

topological quantum field theory is starting to play

important roles also in condensed matter theory,

for example, as seen in the works of Charles Kane,

S.C. Zhang, on topological insulators and Kitaev and

X.G. Wen on topological phases. Sophisticated Chern-

Simons theory calculations and higher order tensor

category theories were used in some of these stud-

ies, especially regarding questions on classification

of topological orders.

Recently we proposed [27], in collaboration with

J. Wang and X.G. Wen, the quantum statistics of anyon

excitations in condensed matter systems satisfy con-

sistency relations arising from surgery on three and

four manifolds. This is deeply related to the work of

Witten on TQFTs.

A very important goal in fundamental physics

and geometry in the twenty first century is to build

a solid foundation for a theory that is capable to in-

corporate quantum theory in the small scale of the

spacetime. Insights from physics and geometry have

to play a fundamental role.

String theory, theory of quantum entanglement

and concept of noncommutative geometry were

brought in. The understanding of quantum entan-

glement, may offer a deeper look into the nature of

spacetime, and important geometric concepts related

to gravitation such as quasi-local mass studied by me

and collaborators.

There is no doubt that great activities in the in-

teractions between geometry and physics will go on

today and in the future. And both subjects will greatly

benefit from it. We expect to seemuch further interac-

tions between geometry and physics in the next fifty

years.
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